Logarithmic intertwining operators and associative algebras
نویسندگان
چکیده
We establish an isomorphism between the space of logarithmic intertwining operators among suitable generalized modules for a vertex operator algebra and the space of homomorphisms between suitable modules for a generalization of Zhu’s algebra given by Dong-Li-Mason.
منابع مشابه
Logarithmic Intertwining Operators and Vertex Operators
This is the first in a series of papers where we study logarithmic intertwining operators for various vertex subalgebras of Heisenberg vertex operator algebras. In this paper we examine logarithmic intertwining operators associated with rank one Heisenberg vertex operator algebra M(1)a, of central charge 1 − 12a . We classify these operators in terms of depth and provide explicit constructions ...
متن کاملWeak modules and logarithmic intertwining operators for vertex operator algebras
We consider a class of weak modules for vertex operator algebras that we call logarithmic modules. We also construct nontrivial examples of intertwining operators between certain logarithmic modules for the Virasoro vertex operator algebra. At the end we speculate about some possible logarithmic intertwiners at the level c = 0. Introduction This work is an attempt to explain an algebraic reform...
متن کاملTensor categories and the mathematics of rational and logarithmic conformal field theory
We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establi...
متن کاملOn the analytic properties of intertwining operators I: global normalizing factors
We provide a uniform estimate for the $L^1$-norm (over any interval of bounded length) of the logarithmic derivatives of global normalizing factors associated to intertwining operators for the following reductive groups over number fields: inner forms of $operatorname{GL}(n)$; quasi-split classical groups and their similitude groups; the exceptional group $G_2$. This estimate is a key in...
متن کاملA Jacobi identity for intertwining operator algebras
We find a Jacobi identity for intertwining operator algebras. Most of the main properties of genus-zero conformal field theories, including the main properties of vertex operator algebras, modules, intertwining operators, Verlinde algebras, and fusing and braiding matrices, are incorporated into this identity. We prove that intertwining operators for a suitable vertex operator algebra satisfy t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011